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CHAPTER 1

INTRODUCTION

The first step in attempting to numerically solve a complex fluid

flow problem is to generate a grid system over the domain of interest.

Then numerical techniques, such as finite difference, finite volume or

finite element methods are applied to solve the governing conservation

laws of fluid mechanics over the domain. It has been snown that the

characteristics of a grid system used have significant effect on the

accuracy and convergency of problem solutions, cf. Refs. [1, 2]. The

use of an improper grid system for a problem often results in diver-

gence or renders even a convergent solution useless.

A grid system in a physical domain of interest can be constructed

by first establishing coordinate points on all, or a portion of, the

boundaries of the domain and then solving for the r ordinates of nodal

points in the dumain interior with appropriate methods; e.g., complex

variable methods, algebraic methods or differential methods. These

nodal points, along with those on the boundaries, form grid cells.

Several characteristics of a grid system are very important as they

affect the accuracy and convergency of problem solutions. Clearly, it

is easier to construct a rectangular coordinate grid system because it

consists simply of straight lines. However, with rectangular coordinate

systems, the implementation of boundary conditions on bodies with com-

plex geometry is tedious. Interpolation between grid points or cells

near boundaries is necessary. This makes the generalization of the cod-

ing of numerical solution algorithms rather difficult. On the other

hand, with a curvilinear boundary-conforming grid system, one or more



if the coordinate lines in the physical domain can be made to coincide

with the boundaries of the body. Wnen the system is transformed into a

computational domain with equal spacing, the computational algorithms

for solving the governing conservation laws, after they are transformed

onto the curvilinear coorainates, can be implemented without interpola-

tions at boundaries, Refs. [2, 3]. This approach greatly facilitates

the effort of coding solution algorithms. In addition, smoothness and

orthogonality are two well-knlown desired characteristics, Refs. li, 2].

Smoothness, which is equivalent to minimization of the change of spac-

ing of grid cells, and orthogonality, which requires grid lines be per-

pendicular to each other, both tend to reduce errors in problem

solutions. Hence these characteristics should be maintained throughout

the grid system as far as is practical. This point will be discussed

in Chapter II.

In certain regions of interest, the gradients of certain param-

eters may be very high. If grid lines in these regions are not ade-

quate; i.e., if the spacings are too large, large truncation errors may

result. This is detrimental to both the accuracy and convergency of

problem solutions. A uniform refinement of the grid network throughout

the entire domain would certainly reduce truncation errors. But often

in practical applications, the resources of computer memory and central

processing unit (CPU) time are limited and a uniform refinement of the

grid system may result in adding grid lines in regions where it is not

needed. These constraints render the approach expensive. A more logi-

cal and economical alternative is to cluster more grid lines in the

regions where high gradients take place and hence where high resolution

2



is needed. in the case o2 simple fluic flow problems, the locations of

high gradients may be estimated and a proper grid system May be con-

s~ructed accordingly. However, for more complex fluid flow problems,

high gradient regions are not known a priori, and the construction of a

proper grid system becomes very difficult. For example, in the area

where shocks occur, more grid lines are needed in order to resolve the

shock location and the properties across the shock more accurately. But

the locations of the shocks are not known until the solution is ob-

tained. The ideal of solution-adaptive grid generation; i.e., generat-

ing grid networks based upon certain solution information as the solu-

tion evolves, appears very attractive to the issue here, of. Refs. [4,

5, 5, 7].

Since Dywer, et al. Ref. [8], and Klopler and McRae, Ref. [9],

presented their works in the early 1980's, many techniques for generat-

ing adaptive grias have appeared. Brackbill, et al. Ref. [6], devel-

oped a variational method for constructing an adaptive grid. Thompson

and Kim, Refs. [4, 5], implemented both a variational appro_:h based on

the Euler equation for function minimization and a control function ap-

proach based on equidistribution of weight.

Kim investigated an adaptive grid around an ONERA M6 wing with the

control function approach. Promising results were obtained, and the

grid clustered to where the shock was located. The flow solver section

of Kim's code, however, was constructed such that grid blocks must be

arranged in a straight sequential ranner; i.e., the front of a second

block must be connected to the back of a first block, and the front of

a third block must be connected to the back of the second block, and so

3



on. This severely limits applicability of the code. In the present

work, this limitation was removed by coupling a flow solver with an

arbitrarily blocking structure, Ref. [10]. Furthermore, in Ref. [4],

the construction of control functions for adaptive grid generation was

based upon an initial grid and gradients of a parameter of a flow

field. A different construction of control functions based upon a cur-

rent grid and flow gradients was used in this effort. This point will

be discussed in Chapter II. A very brief review of elliptic grid gen-

eration with control functions, upon which this work is based, and the

truncation errors associated with the quality of a grid system is also

presented in Chapter II. In addition, a brief description of the EAGLE

grid code, Ref. [16] and the EAGLE flow solver, Ref. [10], which were

employed in this work to construct the solution-adaptive grid code, is

given in Chapter V as well. This control function approach for solu-

tion-adaptive grid generation, with the modifications mentioned above,

was tested with two complex three-dimensional blocked configurations at

transonic region, namely, an eight-block finned body of revolution and

a thirty-block multi-store configuration. The results are discussed in

Chapter III. Concluding remarks and recommendations are contained in

Chapter IV.

4'



CHAPTER II

SOLUTION-ADAPTIVE GRID GENERATION

Numerical simulation of an aerodynamic problem typically consisrs

of generating a grid network on the physical domain of interest and

then applying a partial differential equation (PDE) flow solver over

the grid to obtain solutions. Furthermore, a curvilinear grid system

with some coordinate constant on each segment of the physical boundary

curve or surface is usually preferred for more accurate representation

of boundary conditions, Ref. []. This boundary-conforming grid can be

generated by first specifying values on the boundaries and then deter-

mining the coordinates in the domain interior from the boundaries.

Often the application of a PDE flow solver is performed in a trans-

formed computational domain where uniform rectangular blocks are

formed. For simplicity, unit increments are usually used in each di-

rection of the computational domain. The equivalent problem in grid

generation is then to determine the Cartesian coordinates (or other

type coordinates) in the interior of the computational domain from

specified values and/or slopes on the boundaries of the domain. This

is illustrated for a two-dimensional case in Figure 1.

The determination of interior coordinates in a region can be ac-

complished by either of the following approaches. First, the interior

coordinates can be obtained by simply interpolating values from bounda-

ries which have been specified. The grid generated in this manner is

generally referred to as an algebraic grid. On the other hand, the

problem can be treated as a boundary-value problem. Hence the solution

of a system of partial differential equations can be used to determine

5



the coordinates of interior points, Ref. [11]. If an elliptic partial

differential system is used, all the values at boundaries of a domain

must be specified. If a parabolic or a hyperbolic system is used, only

a portion of the boundary points needs to be specified. In this study,

only elliptic grid generation systems are considered.

11.1 Elliptic Grid Generation

From Refs. 12,13], if a curvilinear coordinate system, i

(i-1,2,3), which satisfies the Laplace system V2-i=o, (i-1,2,3) is

transformed to another coordinate system i, (i-1,2,3), then the new

curvilinear coordinates i satisfy the inhomogeneous elliptic system

V2zi - pi (i - 1,2,3) (Il-1)

where

3 3
p j1 k- 1 9 Pjk (11-2)

and gjk v j • V9< is the contravariant metric tensor (I1-3)

Here

jk k (II-4)
mn-1 n-1 E 3  CE

which arises due to the transformation from i to &. A grid genera-

tion equation can then be defined from equations (II-1) and (11-2):

V2
i 

I 3 3 j

Jk (i-1,2,3) (11-5)

i-i k-i1 j



Equation (11-5) implies that a coordinate system is generated which

corresponds to the application of a stretching transformation to the

coordinate system generated for maximum smoothness.

Actually, Pi is to be specified rather than obtained through a

subsequent transformation. In practical applications, it is the

Cartesian coordinates xi, (i-1,2,3) that are to be sought in the trans-

formed uniform field. Hence Eq. (11-5) should be rewritten with Car

tesian coordinates as dependent variables. Carrying out the transfor-

mation of Eq. (11-5), Ref. [13], and setting 72r=O yields

3 3 31
gkj P k r -0 (11-6)

i.1 j-1 k-1 -

where C is the position vector. If one considers only one-dimensional

stretching in each coordinate direction, the control function can be

further simplified as

pi ii
P - 6 6 1P.jk ik j i

where 6j - 1 if i-j and 0 otherwise. With this simplification, Eq.

(11-6) becomes

3 3 (1137)g I .g 
+  gkkPr k 0 (11-7)

i I-i I k-1

In this work, the concept of solution-radaptive grid generation is in-

vestigated by formulating a definition of the control function Pk in

Eq. (11-7) in terms of flow parameters from PDE flow solvers.



1.2 Truncation Error

As noted above, a grid system must be generated before numerical

simulations of fluid flow can be performed. Since the solution is not

known a priori, it is very difficult to generate a grid system optimal

to the problem at hand. The accuracy of numerical simulations is sig-

nificantly affected by the truncation error, which is inherently intro-

duced into the flow solution algorithms when the derivatives in the

governing fluid flow equations are represented by finite difference or

finite volume approximations. Therefore when a grid network is gener-

ated, attention should be given to minimizing the truncation errors. In

Refs. [1,14], Mastin has considered the following first derivative in

one dimension:

f - (11-8)
x x

where f : solution function
x : Cartesian coordinate

: curvilinear coordinate

With a central difference for f and x,, Eq. (III-1) can be written as,

with A&-1,

Sfi+1 f i-1
x xi+ I -xi_ I

where the truncation error T can be reduced to the following form:

T - - x~f -- X~f (11-9)

8



if the point distribution of the grid system is fixed, it can be shown

that the error represented by Eq. (11-9) is second order and is propor-

tional to I/N2 , where N is the number of grid points, Ref. EI]. This

means that the error will be quartered when the number of grid points

is doubled. On the'other hand, if the number of grid points is fixed,

the second term in (11-9) represents a power of the spacing. The in-

tent of a change of point distribution is then to decrease the local

spacing where the local gradient of a flow parameter is large. Conse-

quently, the spacing must increase where the local gradient is rela-

tively small. The first term in Eq. (11-9) is proportional to the sec-

ond derivative of the solution and hence is diffusive. This term also

contains the term x , the rate of change of the grid-line spacing.

This indicates that the changes in grid spacing should be kept small,

because large changes in grid-line spacing will introduce significant

truncation errors. Mastin has also shown that the truncation error due

to nonorthogonality is inversely proportional to the sine of the angle

between two curvilinear coordinates, Ref. [14]. Therefore, in order to

minimize truncation errors, it is necessary to maintain orthogonality

throughout the grid networks as far as is practical. At boundaries,

orthogonality becomes more important because one-sided difference ap-

proximations are often applied, and in the case of viscous flow, the

thin layer turbulence modeling are logically constructed in the direc-

tion normal to the boundaries, Ref. C15]. There are two different ap-

proaches employed in this study to achieve the grid orthogonality at

boundaries. In the first approach, the slope of grid lines at the

boundaries is iteratively adjusted to be orthogonal while the locations

of grid lines at boundaries are fixed, Ref. [14,16]. In the second

9



approach, the gria points at the intersections of grid lines with the

first line or surface off the boundaries are fixed and then the grid

lines are allowea to relocate with orthogonality at the boundaries,

Refs. [4,14,16,17].

The task of generating grid networks with reduced truncation er-

rors based upon known solution information; i.e., solution-adaptive

grid generation, can be accomplished by either adding additional grid

lines or clustering existing grid lines to the regions where high gra-

dients of flow parameters in the field occur. In this work, the solu-

tion-adaptive grid generation technique is investigated with grid

networks of fixed numbers of grid points, using the control function

approach as indicated in Eq. (11-7).

11.3 Control Function Approach

The basic idea of solution-adaptive grids is to reduce errors by

generating grids with grid cells that contain equal amounts of some

positive weight function, Refs. [4,5,6,18]. In one dimension, equidis-

tribution occurs when the spacing between grid points is inversely pro-

portional to the weight. In differential form, assuming a

transformation from a curvilinear coordinate to the Cartesian coordi-

nate along a given curve, this can be written

W(x) dx - c d& (II-10)

where W : weight function

c : proportional constant

10



In the transformed uniform space in , d is viewed as a constant. The

desired spacing is then obtained when the spacing shrinks or expands as

the weight function W(x) increases or decreases, respectively. Inte-

grating Eq. (II-10) over a cell,

fxi+1  i+

W(x) dx - c f d - c(+ - i) (II-11)
ix j i1 - i

where Ei+ - &i . constant

Eq. (II-11) states that the total weight over each cell is kept con-

stant. In discrete form, Eq. (II-11) becomes

W 1 (x - x ) = constant (11-12)

where W I-(W + W

i1 2 i+1 i
2

Here again, if the weight function is large, xi+ I and xi approach each

ocher. From Eq. (I-10), we have

W(x) x constant (11-13)

Differentiating with respect to , we get

x W + X W= 0 (II-14)

Rewriting the general three-dimensional elliptic equation (11-7) in one

dimension,

x +Px -0 (11-15)

From Eqs. (11-14) and (11-15), we obtain

11



x W

as the control function in terms of weight function and its derivative.

Extending Eq. (11-16) to all three directions, Refs. [19,20],

P & (i=1,2,3) (11-17)

The complete generalization of (11-16) is, as given by Eiseman, Ref.

[18],

3 gij (w ig.i 3 (i=i .2,3) (11-18)Pi I gii w . (-123

This definition of the control functions involves the derivatives of

the weight function in three directions, with each weighted by its cor-

responding contravariant metric tensor element g'j. This provides a

convenient means to specify three separate cQntrol functions. For in-

stance, one may specify the pressure gradient as the weight function in

one direction and the velocity gradient in another. Equation (11-17)

is in fact the diagonal terms of Eq. (11-18). When the pressure gradi-

ent is used to define the weight function, it can be written

W . 1 + jVpj (11-19)

The pressure gradient term in the above equation tends to concentrate

more grid lines in the high pressure gradient region, while the 1 tends

to produce equal spacing, Ref. [14].

When a grid system is generated using the elliptic equation

(11-7), a set of control functions can be generated based upon the geo-

metrical characteristics of the grid, Ref. [I]. If only the control

12



functions based upon gradients of flow parameters are used to regener-

ate a new grid, then the geometrical characteristics of the existing

grid will be lost. In order to preserve the geometrical characteris-

tics of the existing grid, it is logical to construct useful control

functions in such a manner that the control functions defined in Eq.

(11-18) be a correction factor to the previous set of control func-

tions, i.e.,

Pi (P initial)i ci(P wt) (i-I,2,3) (11-20)

geome try

where Pinitial control function based on initial grid

geometry

Pwt : control function based on gradient

C : constant

The constant c is to be specified to weight the control function based

upon gradients. Referring to Eqs. (11-7) and (11-20), the elliptic

system used to generate the solution-adaptive grid is then

g gr i + g k r k 0 (11-21)
i.1 J-1 - k=1

which is solved by the point over-relaxation method to generate new

adaptive grids, Ref. [16]. The superscript (n) in Eq. (IIs21) is the

sequential number of grid adaptations. During the investigation, how-

ever, it was found that for a given set of weight constants; i.e., the

ci's in Eq. (11-20), the progress of grid adaptation was relatively

slow. A different construction of the control functions based upon the

current grid rather than the initial grid and the flow gradients was

tried. This can be formulated as follows.

13



P. = (p )(0) + C (P )(0) (i=1,2,3)i initial i Wt

geometry

(2) (1) + c ( )

Pi + wt ( ) (i-1,2,3) (11-22)

(n) (n-1)(n1p. . p + c(w)(n-) (i1,2 3)

where the superscripts indicate the sequential number of grid adapta-

tions. The P 1), p 2), ... pn) are then control functions correspond-

ing to the 1st, 2nd, ... nth adaptive grids respectively. It was found

that the progress of grid adaptation based upon Eq. (11-22) is much

more efficient than that based upon Eq. (11-20). This will be demon-

strated in Chapter III.

The iterative process of solution-adaptive grid generation is im-

plemented as follows:

Initial Algebraic Grid

0 Elliptic Grid

I (Flow Solver Integration)

Flow Solver

Select Flow Parameter

4
New Control Function

(Adaptive grid iteration)4-i

14



Since in this work the solution-adaptive grid generation code was con-

structed by coupling the EAGLE (Eglin Arbitrary Geometry ImpLict Euler)

grid and flow codes, Refs. [10,16], brief descriptions of the features

of these codes are in order here.

II.4 EAGLE Grid Code

The EAGLE grid code, Ref. [16] is a general three-dimensional el-

liptic grid generation code based on the block structure with control

function approach. This code allows any number of hexahedronal blocks

to be used to fill an arbitrary three-dimensional physical region, with

each of the hexahedronal blocks corresponding to a rectangular computa-

tional block. This composite-block structure of the code is very flex-

ible. A block can be connected to other blocks through entire or

partial sides of the corresponding blocks, or to itself, with complete

continuity, with slope continuity, with only line continuity or discon-

tinuity across the interfaces between connecting blocks. Except in the

case of discontinuity, all the connecting blocks must have the same

number of points on their common interfaces. In the case of complete

continuity, the interface is a branch cut and a correspondence across

the interface in terms of object points and image points, Ref. [I], is

established by using an extra layer of points surrounding the cor-

responding blocks. This allows the points on the interface to be

treated as all other points so that the continuity is retained. The

physical location of the interfaces are thus totally unspecified, being

determined by the code.
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The elliptic characteristics of a mesh is achieved by using con-

trol function approach, Ref. []. The control function can be evalu-

ated either from the initial algebraic grid and then smoothed, or by

interpolation from the boundary point distributions. In the latter

case, the arc length and curvature contributions to the control func-

tions are evaluated and interpolated separately into the mesh from the

appropriate boundaries, and the control function at each point in the

mesh is then formed by combining the interpolated components. This

procedure allows very general regions, with widely varying boundary

curvature, to be treated.

The boundary orthogonality can be achieved by Neumann boundary

conditions, Ref. [I], which allows the boundary points to relocate over

a surface spline. The new locations of the boundary points are deter-

mined by Newton iteration with the grid lines normal to the surface

spline. Alternatively, the boundary orthogonality can be achieved by

iterative adjustment of the slope of a grid line until the grid line is

normal to the surface. In the latter case, the location of the grid

point on the surface, however, is fixed, Ref. [1]. The Neumann bound-

ary approach was employed in this study to obtain both orthogonality

and solution-adaptive grid.

11.5 EAGLE Flow Code

The EAGLE flow code is a three-dimensional unsteady Euler fluid flow

solver capable of simulating aerodynamics around complex three-dimensional

geometries with composite-blocked grid systems, Ref. [10]. The governing

equations of the EAGLE flow code are the three-dimensional time-dependent

Euler equations, which consist of the conservation laws of mass, momentum
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and energy, and the equation of state of an ideal gas. For the advan-

tage of boundary-conforming grids and the simplicity of performing com-

putations in uniform space, the equations are scaled and transformed

onto a three-dimensional curvilinear coordinate system. An implicit,

finite volume, upwind, flux-vector of flux-difference split, approxi-

mate factorization numerical technique is then applied to solve the

equations, Ref. [10]. A solution is obtained by a two-factor scheme

which consists of solving a spare block lower triangular matrix sys-

tem with forward substitution followed by solving a spare block upper

triangular matrix system with backward substitution through the com-

putational domain. Various boundary conditions, such as impermeable

surface, farfield subsonic or supersonic inflow/outflow were imple-

mented to facilitate the simulation of physical boundary conditions.

The interface of a blocked grid system is treated in terms of phantom

or image points, Ref. [10]. The dependent variables coTresponding to a

block interface are stored and made available for the adjacent block

when they are needed. For steady state solution, the dependent vari-

ables at the interface are unsynchronized; i.e., the code takes what-

ever time level values are present when they are needed. Numerical

results obtained so far has shown that for steady state solution,

there appears to be no degradation in convergence or stability, Ref.

[10]. In this work, the flux-difference split option of the flow code

was used.
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CHAPTER III

RESULTS AND DISCUSSION

The solution-adaptive grid generation technique with the control

function approach as described in the previous chapter was tested with

two complex three-dimensional multiple-blocked configurations at tran-

sonic flow conditions: (1) an eight-block finned body of revolution

at an angle of attack of 12 degrees with a Mach number of 0.95, (2) a

thirty-block multiple-store ogive-cylinder-ogive configuration at an

angle of attack of zero degree with a Mach number of 0.95. The results

obtained are discussed in the following sections.

II.1 Finned Body of Revolution

The srructure of the grid system used for the finned body of revo-

lution was generated by using the EAGLE surface generation code, Ref.

[21] and the EAGLE grid generation code, Ref. [16] and is shown in Fig-

ures 2 through 5. Figure 2 shows the outer boundary of the grin and

the location of the body within the grid, while Fig. 3 shows the grid

on the surface of the body and thaL extenced from the body toward the

outer boundary. Figurcs 4 and 5 show the detailed view of the grid at

the nose section and tail section of the body, respectively. In Fig.

5, the fins were removed for clarity. The grid consists of eight

blocks: four blocks in the nose section and four blocks in the tail

section, with four fins located circumferentially at angular intervals

of 90 degrees. Each block was dimensioned 69x25x13. The elliptic op-

tion of the grid generation code was used to generate the initial grid

with Neumann boundary conditions specified on the nose section of the
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body, except for several grid lines in front of the leading edge of the

fins which intersect the body at an angle of about 55 degrees and ren-

der the application of Neumann boundary conditions inappropriate there,

Ref. [16]. Except for these Neumann boundary points, all the grid

points on the solid surface of the body are fixed points, Ref. [16].

This can be seen in Figs. 4 and 5. This grid system is a modified ver-

sion of that used in Ref. [22]. The differences are that the grid

lines are uniformly distributed in the circumferential direction here,

and that the orthogonality of grid lines is maintained at the surface

as described above.

The aerodynamics around the body was first solved without using

the solution-adaptive technique and then with the solution-adaptive

technique. Comparison was then made between the two results. The

pressure and Mach contours with the initial grid at an angle of attack

of 12 degrees and a Macn number of 0.95 after 1000 iterarions with

CFL - 4.0 are shown in Figs. 6 and 7. In these figures, the fins are

again removed for clarity. It is clear that there is a matrix of

shocks around the body. A strong shock occurs at the leeward siae of

the nose section and its strength decreases in the circumferential di-

rection toward the windward side. There is a lambda shape shock at

about the middle of the upper tail section. There also are shocks

around the base of the body. The glitch line starting from the junc-

tion between the nose and tail section toward the outer field with an

angle of about 55 degrees is due to the deficiency of the plot rou-

tine used. Similar glitch lines present in almost all the contour

plots reported in this work and are due to the deficiency of the plot
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routine used. The solution-adaptive grids based upon Eq. (11-20) in

Chapter 1I, using pressure gradients as weight functions, at the same

flow conditions; i.e., Mach - 0.95, alpha = 12 deg. were obtained at

200, 300, 400, 500, and 600 iterations of flow solutions with the con-

centration constant c - 5.0. The fifth adaptive grid, i.e., the one

obtained after the 600th iteration is displayed in Fig. 8. It can be

observed that only slight clustering of grid lines occur in response

to the shocks in the flow field. This is not very effective.

The case was repeated at exactly the same flow conditions, except

that Eq. (11-21) was employed in constructing control functions. The

solution-adaptive grids as before, were obtained with the concentration

constant c = 5.0 at 200, 300, 400, 500, and 600 iterations and are dis-

played in Figs. 9 thru 13, respectively. When compared with Fig. 6 or

Fig. 7, it is clear that the grid lines are gradually clustering around

areas where shocks occur in the flow field. Figure 14 snows the aetail

of the adaptive grid at the ncse section with five adaptations. The

grid lines cluster more closely on the leeward side of the body and

then gradually relax the clustering effect in the circumferential di-

rection toward the windward side of the body. This is exactly in re-

sponse to the characteristics of the shock that occurred in the flow

field. Around the frontal area of the nose section, the grid lines

move toward the body in response to the high pressure gradients occur-

ring around the area. This can be observed in Fig. 13 or Fig. 14. Fig-

ure 15 displays a close-up of the adaptive grid at the shock. It is

interesting to note that in this test case the spacing of the adaptive
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grid lines at the shock is approximately one-tenth of that of the ini-

tial grid. In addition, the orthogonality of the grid lines at the

solid surface is maintained where Neumann boundary conditions were ap-

plied. The details of the fifth adaptive grid at the tail section are

shown in Fig. 16. Here again, the clustering of the grid lines occurs

at the middle of the tail section and the base of the body, in response

to the shocks there. Although from Figs. 6 and 7, there are small

shocks between the lambda shock and the shock at the base, the grid

lines there do not appear to cluster effectively. This is most likely

due to the fact that the strengths of these shocks are weak relative to

those at the middle section and the base. The flow solver calculation

was carried out to 1000 iterations with the fifth adaptive grid. The

corresponding pressure contours are shown in Fig. 17. Compared with

Fig. 6, it can be observed that the shocks are more clearly defined

with the adaptive grid. This can be more easily seen in Figs. 18 and

19, which display the shock in the leeward side of the nose section

with the initial grid and with the adaptive grid respectively.

In Fig. 18, the shape of the shock is not well defined. The width

of the shock is wide while in Fig. 19, the shape of the shock is much

more clearly defined. The width of the shock is much more narrower.

This clearly demonstrates the advantage of the adaptive grid over the

non-adaptive grid that with adaptive grid the simulation of the aerody-

namics is much closer to the reality. The pressure contours on the

surface of the nose section with the initial grid and with the adaptive

grid are shown in Figs. 20 and 21 respectively. Again, the width of

the shock with the adaptive grid is narrower than with the initial

21



grid. As mentioned before, the apparent glitch line at the middle of

the body in the axial direction in Figs. 20 and 21 is due to the defi-

ciency of the plot routine used.

1i is also ooserved that the shape of the lambda shock at the mid-

dle of the tail section is more clearly defined with the adaptive grid,

Fig. 6. The corresponding Mach contour is shown in Fig. 22. As in the

pressure contour plots, the shocks are more clearly defined with the

adaptive grid. Figures 23 and 24 show the detail of the frontal shock

with the initial grid and with the adaptive grid, respectively. In

Fig. 24, it can be observed that the shock is much more clearly defined

on both the leeward side and windward side of the body. The movement

of the grid lines on the body clearly reflected the characteristics of

the variation of the pressure distribution, or equivalent Mach number,

on the surface of the body. Throughout all the Figures that displayed

grids, it can be observed that all the transitions of grid lines at tne

interface of adjacent blocks are very smooth. For example, in Figure

14, which shows the adaptive grid at the nose section with five adapta-

tions, the seventh line from the top of the body in the circumferential

direction is an interface between two blocks. The adaptive grid lines

there cross the boundary very smoothly.

The calculated pressure distributions at various azimuthal loca-

tions along the body with and without the adaptive grids are plotted

versus experimental data in Figs. 25 thru 30, while the

pressure distributions along the fins are shown in Figs. 31 thru 38.

Examination of the pressure distributions shows that although the adap-

tive grid does yield a much clearer definition of shocks in the flow
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field, the pressure distributions with the adaptive grids in general do

not differ significantly from that with the initial grid in this test

case. This can be attributed to the fact that although the initial

grid is not sufficient to yield a good definition of shocks, it appears

adequate to yield reasonably good pressure distributions. Very similar

observations can be made from the pressure distributions along the fins

as shown in Figs. 31 thru 38. It is interesting to observe that be-

cause the body is at an angle of attack of 12 degrees and flow expands

on the upper side of the fin surfaces, the effect of the adaptive grid

is more readily observable on the upper side than on the lower side of

the fin surfaces, as evidenced by comparing Figs. 35 and 37 with Figs.

36 and 38.

The density residual convergence histories for blocks one thru

four and blocks five thru eight are shown in Figs. 39 and 40 respec-

tively. The grid adaptation does cause disturbances in the residual

convergence histories. The disturbances, however, diminish rapidly

after several cycles of flow solution integration and do not adversely

affect the overall residual convergence histories. Hence, attempts to

do any averaging process on the flow variables for the newly generated

adaptive grid do not appear necessary for steady state solutions. The

extra central process unit (CPU) time needed for five adaptations was

about 3.4% over that of the non-adaptive approach in this test case.
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711.2 Multiple-Store Configuration

A more complex multiple-store configuration was also used to test

the solution-adaptive grid generation technique. It consists of three

ogive-cylinder-ogive stores. But, due to the symmetry of the configu-

ration, only one-half of the configuration needed to be gridded for

flow solution calculations, Ref. C23j. The grid system consists of

thirty blocks. Figures 41 and 42 show the perspective view and Fig. 43

shows a cross sectional view of the composite grid system. Figures 44

and 45 show a perspective and a frontal view of the stores respec-

tively. In reference to Fig. 46, which shows a cross sectional view of

the configuration, the store at the upper right hand location is re-

ferred to as store 1 and the one at the middle location is referred to

as store 2. Various sections are also indicated here for later refer-

ence. The configuration was tested at an angle of attack of zero degree

with a Mach number of 0.95. In the following, the results obtained are

discussed in reference to the various sections indicated in Fig. 46.

Figure 47 shows the initial grid at Section A-A. The pressure and

Mach contours with the initial grid at 400 iterations of the flow

solver calculation are displayed in Figs. 48 and 49. It is clear that

a strong shock is located at the base of store I. Here again, the

glitch lines that appear on these contour plots are due to the defi-

ciency of the plot routine used. Then the solution-adaptive grid gen-

eration technique was applied. Adaptive grids were obtained at 80,

120, and 160 cycles of the flow solver calculations and are shown in

Figs. 50, 51, and 52 respectively. It is readily observable that the

grid lines cluster at both the base and the nose of the store in
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response to high pressure gradients in the areas. The corresponding

pressure and Mach contours obtained at 400 cycles of the flow solver

calculation with the third adaptive grid are shown in Figs. 53 and 54.

It can be observed that the width of the shock is narrower with the

adaptive grid. Hence, the adaptive grid does improve the quality of

the simulation of the flow field. The calculated pressure distribution

along the store at two locations namely, phi - 0 Deg and phi = 220 Deg,

are displayed versus experimental data, in Figs. 55 and 56

respectively. It is observed that the pressure distribution with the

adaptive grid does not significantly differ from that with the initial

grid. This is attributed to the fact that the initial grid is adequate

for prediction of pressure distribution in this case.

The initial grid at Section B-B (see Fig. 46) is shown in Fig. 57

while the corresponding pressure an-d Mach contours are shown in Figs.

58 and 59 respectively. Strong shocks occur at the base area above,

between and below the stores. The solution-adaptive grids at 80, 120,

and 160 cycles are displayed in Figs. 60, 61 , and 62 respectively.

Again, the grid lines cluster in response to the pressure gradients in

the flow field. The corresponding pressure and Mach contours are shown

in Figs. 63 and 64. When compared with Figs. 58 and 59, the narrowing

of the width of the shocks due to the effect of the adaptive grids is

readily observable.

The initial grids of Sections C-C, D-D, E-E, and F-F, (see Fig.

46) are shown in Figs. 65, 67, 69, and 71 respectively, while the corre-

sponding adaptive grids with three adaptations are displayed in Figs.

66, 68, 70, and 72 respectively. It is evident from these figures that
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the solution-adaptive technique works very well. The extra CPU time

needed for the calculation of the three adaptive grid generations, in

this case, was about 8% over that without grid adaptation.
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CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

In attempting to numerically simulate fluid flow around vehicles,

it is necessary to first generate a grid network over the domain of in-

terest, and then a PDE flow solver is applied with the grid to obtain

solutions. An appropriate grid system, however, is difficult to gener-

ate because the flow solution in a domain is not known a priori. A so-

lution-adaptive grid generation technique capable of generating a

proper grid network based upon solution information as the problem so-

lution evolves appears very desirable. In this study, a solution-adap-

tive grid generation technique based upon an elliptic system with

control functions has been investigated. The control functions are

first evaluated by using the geometry of the initial elliptic grid, and

then are corrected by a weight function based upon pressure gradients

in the field provided by the flow solution. The elliptic grid genera-

tor with updated control functions is then applied to regenerate a new

grid with more grid-line clustering around high pressure gradient re-

gions in the flow field. The computation of the flow solution contin-

ues with the newly generated adaptive grid. The grid generation and

the flow solver codes have been coupled together so that solution-adap-

tive grids can be generated automatically without any manual manipula-

tion. The coupled computer code has been implemented on a CRAY-2

computer system. Orthogonality may be specified in some desired

regions in a grid, while smoothness is implicit in the elliptic equa-

tions. The application of the code has been demonstrated by the two

test cases presented in this study, namely, an eight-block finned body
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of revolution and a thirty-block multiple stores configuration. The

results obtained have shown that the solution-adaptive approach does

provide improved grids for the problems.

The applicability of the code can also be extended. For instance,

the control function can assume the form of a combination of pressure

gradient and other flow parameters, such as velocity gradient or den-

sity gradient. Furthermore, different concentration factors can be

given to each individual flow parameter in different coordinate direcT

tions. For example, it is conceivably advantageous to assign more

weight to pressure gradients in the streamwise direction and to ve-

locity gradients in the direction normal to solid surface boundaries,

if a thin-layer Navier-Stokes type flow solver is employed. The deter-

mination of the concentration factors and the number of adaptations,

however, is still empirical. It would be worthwhile to develop an in-

telligent expert system which is capable of automatically determining

the concentration factors and number of adaptations over a wide range

of flow conditions to increase the robustness of the approach.

In conclusion, the solution-adaptive grid generation technique

does provide proper grid networks for fluid flow simulations and should

be an integral part of future computational fluid dynamics.
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